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Abstract

A decomposition of the field at the aperture of an optical
system in terms of the eigenfunctions of a certain integral equation
is useful in analyzing the detectability of incoherent objects.

The kernel of the integral equation is the mutual coherence function
of the light from the object. The decomposition permits specifi-
cation of the number of degrees of freedom in the aperture field
contributing to detection of the object. Quantum—mechanically the
coefficients of the modal decomposition become operators similar to
the usual creation and annihilation operators for field modes. The
optimum detector of the object is derived in terms of these operatorsl
Specific detection probabilities are calculated for a uniform cir-
cular object whose light is observed at a circular aperture The
modal decomposition is also applied to estimating the radiance dis-

tribution of the object plane.



Helstrom

B WY

Detection, resolution, and parameter estimation in the object space a13}

the primary functions of an optical system. That space is usually taken tok%e
a plane, the mapping of whose radiance distribution is an important type of
parameter estimation. Detection and resolution, on the other hand, involve
decisions among hypotheses about the object.plane.l’2

The data upon which these decisions and estimates are based are the
values of the electromagnetic field at the aperture A of the optical system, as
observed during a finite interval (0, T). Lenses, stops, and photosensitive
surfaces process the aperture field in such a way as to facilitate the decisions
and estimates. The quality of the system can be measured by probabilities of
correct decisions and mean-square errors in estimates of object parameters.
These measures are instructively compared with the best values attainable by
any system working with the same data. The ideal optical system that maximizes
probabilities of correct decision or minimizes estimation errors is called the
optimum system, and its structure can be determined by the methods of detection
theory.s’4

Whén the object plane radiates incoherently, the analysis by detection
theory émploys a characteristic decomposition of the aperture field into
spatial and temporal modes. The mode functions are the eigenfunctions of an
integral equation whose kernel is the spatio-temporal mutual coherence function
of the part of the aperture field generated by the object to be detected. The
“associated eigenvalues determine the detectability of the object through the
probability distributions of the modal expansion coefficients. Generally only
a finite number M; of the eigenvalues are significantly different from zero,

and only the field modes associated with them contribute substantially to

detection. Thus h&.specifies the number of significant degrees of freedom.in -
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the aperture field relative to the detection of a certain object. For spec-
trally pure object light MT can bé factored into a number M of spatial degrees
of freedom and a number M' of temporal degrees of freedom. The temporal factor
M'-is the product WI of the observation interval T and the bandwidth W of the
object light.

When the light from the object possesses complete first-order coherence
at the aperture, M = 1 and there is a single significant spatial mode. When
the object is so large, on the other hand, that the coherence length of its
light is much smaller than the diameter of the aperture, M >> 1 and--as we shall
see--the mode eigenvalues are proportional to values of the object radiance at
sample points separated by a conventional resolution interval. If the aperture
is provided with a lens to focus the light onto an image plane, each spatial
mode, for M > 1, goes into a conventional resolution element of the image.
Mapping the radiance of the object plane, furthermore, can be treated as esti-
mating the eigenvalues of these spatial modes.

The eigenfunctions and eigenvalues of the mutual coherence function of the
aperture field thus supply a precise meaning for the coﬁcept of informative
degrees of freedom in the aperture field with respect to detection and resolu-
tion. There is a direct relation to the concept of degrees of freedom in an
image, as treated by Toraldo di Francia and others.5

This paper will develop in some detail the modal decomposition of the
aperture field and its application to the detection of an object and the esti-
mation of the radiance distribution of the object plane. Associated with the
vspatio—temporal field modes are quantum-mechanical operators with much the
same properties as the creation and annihilation operators in the usual form
of field quantization.6 Under normal conditions of observation, the operators.

for different modes commute, and the detection of an incoherent object can be
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based on the number of photons counted (ﬁin each mode. Specific results are
given for detecting a uniform circul.ér‘ object by observation of the fvi'_gl»_d_ipyer
a circular aperture. -

The theory is developed for a scalar model of the electromagnetic field.
Our results can be applied to ordinary unpolarized light by doubling the
effective number M of spatial modes in the field at the aperture of the observ-

ing system.
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I. The Modal Decomposition of the Aperture Field

The Field

In this section the electromagnetic field at the aperture will be treated
classically, and for simplicity it will be taken as a scalar. The positive-
frequency part of the field--or amalytic signal--y (r, t) is composed of a part
ws(;, t) due to the object, when present, and a part wn(g, t) due to the back-
ground,

v (r, ) =9 (r, t) + v (x, ). (1.1)
The background field, or ”noise“,wn(g, t) is spatially and temporally white, its
distribution being much broader in both frequency and direction than that of the
object component, or ''signal', ws(g, t).

Both signal and noise fields are circular-complex, spatio-temporal
gaussian random processes.7 The probability density functions describing them
are specified completely by their mutual coherence functions

Tl (r,, t,) ¥ir,, t,)] =

e (), tis 1, t) =Né(r -r1) 8t -t), (1.2)

IBle @y, t) viCr,, t)] = &1, t;5 1, t), (1.3)
where E stands for the statistical expectation and N' is the spatio-temporal
Spectral density of the background light. The mutual coherence function of the

total field is ¢n + ¢;.

For convenience of discussion we assume the light from the object to be
quasimonochromatic and spectrally pure, so that its mutual coherence function
can be factored into spatial and temporal parts, -

o (r,, t)5 Iy, t)) = A(ry, 1) x(t; - t,) exp ia(t, - t,), (1.4)

where © = 2nc/) is the central angular frequency of the object light, whose.
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predominant wavelength is A. The temporal autocovariance function x(t) is
normalized so that x(0) = 1, and the spatial part <PS(§1, r,)--as in III--so
that the illuminance at point r of the aperture due to the object is ¢_(r, 1)/

20%c. The total energy received from the object during the interval (0, T) is

E, = (zszzc)'lerps(;r, r) d’r.
A

The spectral density of the object light is

[o¢]

X(w) =/ (t) &7 dr, (1.5)

— 00

with angular frequencies w referred to Q. Its bandwidth W is conveniently

defined by o -
W= f X(w) dw/2m 2// [X(0)]}? dw/2n =

Ix(O)IZ//_ |x(x)|2dr. (1.6)

We shall assume, as is normal in practice, that the observation time T is much

~greater than the correlation time W™! of the object light; WT >> 1.
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The Mbdal Expansion

In treating the optimum detection of a temporal gaussian stochastic
process, or random signal, in the presence of white noise, it is convenient to
decompose the input to the receiver in a Karhunen-Loeve expansion, whose terms
are the eigenfunctions of the autocovariance function of the signal.9 The
coefficients of the expansion are statistically independent gaussian random
variables in both the presence and the absence of the signal.

A similar expansion is useful in analyzing the detectability of optical

fields.10 The aperture field is written as

@ =) Y e, £G, 0, @.n
P m

where the apm are statistically independent gaussian random variables. The
expansion functions fpm(g, t) are orthonormal over the aperture A and the

interval (0, T),

T
* 2 =
ff fpm (r, t) fqn(g, t) d*rdt qu $ (1.8)
AY O
They are eigenfunctions of the integral equation
T .
= 2 .
om fpm(r, t) Cfd §f du ¢ (r, t; s, v fpm(g, u) 1.9
A 0

with C a suitable constant.
Because the object light is assumed spectrally pure, Eq. (1.4) permits us

to break the eigenfunction fbm(g, t) into spatial and temporal factors,

£n@ 8 = 1 @) vy (0) e, (1.10)
Aom = B (1.11)

where ym(t) is an eigenfunction of x(t - s),
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T

- 'Ym(t) = T-'lf X(t ) Ym(s) ds “ (1.12)
0
and np(g) an eigenfunction of qg(y, s),
by n () = (29%T/E) l\ 7,(x, $) n(s) . (1.13)

The constant C has been selected in such a way that Eq. (1.13) is equivalent
to 111, Eq. (5.6) with hp = vP/NS, where NS is the average total number of photons
received from the object at the aperture A during the interval (O, T), and vp

are the eigenvalues defined in III. Both sets of eigenfunctions sum to 1,

Z g =1, th =1, (1.14)
m P

and are considered as arranged in descending order.
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The TemporalAIntegral Equation

Studying the temporal integral equation (1.12) briefly will help us under-
stand the spatial one, Eq. (1.13). Since WI >> 1, the width of the kernel x(t)
in'Eq. (1.12) is much less than the length T of the interval of'integration, and
the spectral density X(w) does not vary significantly as o changes by 2n/T. The
eigenvalues are then approximately11

- = T-1 X(2my/T), m =.:2, -1, 0, 1, 2,... (1.15)
The number of eigenvalues significantly different from zero is of the order of
WT. The associated eigenfunctions are approximately the complex exponentials,
v, (t) 2 T-Y2 exp (-2mimt/T) . (1.16)
The highest frequencies appearing in the significant temporal modes, as measured
with réspect to ©/2n, are of the order of W.

If the autocovariance function x(t) were periodic in t with period T, the
eigenvalues and eigenfunctions would be given exactly by the right-hand sides of
Egs. (1.15) and (1.16), as substitution into Eq. (1.12) easily demonstrates.

When the width W1 of x(t¢) is much less than T, the fact that x(r) is not periodic,
but is concentrated about t = 0, does not alter g, and ym(t) very much.

Since we are mainly concerned here with the spatial properties of the
aperture field, we shall assume that the temporal spectral density X(w) is
constant over the range -7W < w < 7W and zero elsewhere. There are then WT
eigenvalues equal approximately to (WT)-!, and all the temporal modes specified
by the ym(t) are equivalent. The exact eigenfunctions are the prolate spheroidal
wavefunctions,12 and the exact eigenvalues are nearly g, = (WT)-1 for

1

1s< |m| < §WT. The g, become very small for m > WI. In optics the product

WT may be 10° or more.
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The Spatial Iﬁtegral Equation
We suppose that the 6bject to be détected is very far away and éubtends a
small solid angle from the point of observation. Its radiance is given by the
function B(u), in which u is a 2-vector of coordinates in the object plane.
Then it follows from the Fresnel-Kirchhoff approximation that the spatial coher-

ence function at the aperture is13

- ik
o (r,, 1,) = (8nR*2%c)"~! eXP[%§{§12 - {22)} B(r, - 1,)5 (1.17)
where B(r) is the Fourier transform of the object radiance,

B(x) = / B(u) exp(iku-r/R) d%u. (1.18)
‘ O
Here O indicates an integration over the object plane, R is the distance to the

object, and k = 2n/A.

By defining new eigenfunctions

nI')(r) = np(z‘) exp(-ikr?/2R), (1.19)
we can write the spatial integral equation as
honi(r,) = [A8(0)]°! f 8(x, - 1,) n(x,) &1y, (1.20)
A

where A is the area of the aperture. The spatial integral equation has now the
- convolutional form of the temporal one, Eq. (1.12). The function 8(r) corresponds
ﬁo x (1), the radiance B(u) to the spectal density X(w).

When the object is a '"point'', that is, when it subtends from the aperture
a solid angle much less than A?/A, the object field possesses first-order
coherence over the aperture, g(r) = g(0). There is a single eigenvalue h;
equal to 1, and the rest of the eigenvalues hp are zero. The eigenfunction:

. . ] 1 .. . .
n; (1) associated with h, is constant, n{({) = A2, The remaining eigenfunctions

10
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caﬁ be'an.arbitrary set of functions orthonormal among themselves and to nl'(g).
Only aisingle field mode at the aper£ure isvsigﬁifigant for detecting -a point
object or for estimating its radiance or its frequency.l4

When the object is so large that its solid angle spans many multiples of
XZ/A, and when its radiance B(u) varies only slightly over distances of the
order of ARA_%, the widths of the mutual coherence function and 8(r) are much
smaller than the diameter of the aperture. The eigenvalues h_ can then be
approximated in the same manner as'the g, s in Eq. (1.12), provided the aperture
is rectangular. We denote its length by a, its width by b; its area is A = ab.
The integral equation (1.20) is now a two-dimensional version of Eq. (1.12).
The mode subscripts become 2-vectors p = (px, py) of integers Py and py to
account for the x- and y-directions.

The eigenvalues hp are now approximately

ho 2 A B(p,S, » p8,)/B, (1.21)

where SX‘= AR/a, & = AR/b, and A6 = éxéy. Here

y
B = 8(0) = [ B(w) d%u (1.22)
is the integrated radiance of the object. The eigenfunction associated with h

~

is approximately

1 W
%2 exp[2mi (pxa”l + pyb-1]. (1.23)

"(r) ¥A
ng(~)
The eigenfunctions nﬁ(y) depend only weakly on the actual distribution B(u) of
the radiance, provided B(u) nowhere changes by very much over distances of the
order of Sy and sy.
When the area Ao of the object is so large that A_O/sxcsy >> 1, the eigen-

values h.p are proportional to samples of the object radiance at points separated
in x by 3x = AR/a and in y by Gy = AR/b. The area Ag = Gxdy associated with
each sampling point subtends from the aperture a solid angle of A/R* = AZ/A.

The number of significant spatial modes in the aperture field is roughly equal

11
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to M = Ab/A6 = AAO/AZR?. The highes;»ébatia;-frquegcies occurring in the -
‘significant modes are of the order ofbéo/AR and bo/AR in the x- andvy—a%rections,
where a, and bo are the 1éngth and breadth of the object. These spatial fre-
quencies will be much less than k/2m = A-! when A << R?, that is, wheﬁ the
solid aﬁgle A.O/R2 subtended by the object is much less than 1 steradian.

If a lens of focal length F is placed in the aperture, it focuses the
object plane onto an image plane at a distance R' = RF/(R + F) beyond the aper-
ture. The component of the apertufe field propoftional to np({) creates at
point (x', y') in the image plane a field proportional to i

sinc[r(x' - gpx)/éx'] sincn(y"' - gpy)/éy'],
6,' = AR'/a, 5" = AR'/b,
where

] = S '; 8!
(EEX EE’Y) (P8 "s PySy ")

is the geometrical image of the object point (pxdx, pysy), and sinc x = (sin x)/
x. Thus each spatial mode of the aperture field generates in the image plane

the diffracted image of its associated object point. When M = AO/Gxa > 1,

the mode expansion of the aperture field corresponds to the usual eponsion of
the field in the image plane through the Whittaker-Shannon sampling theorem.15
In this way the integral equations (1.13) and (1.20) permit a measure of
the number of spatial degreés of freedom in the aperture field that contribute
to detection and estimation of the object. The measure reduces to the generally
éccepted one at both extremes of complete first-order coherence (AO/SXSY << 1)

and extreme incoherence (A.O/GXGy >> 1), yet is definable through Eqs. (1.13)

and (1.20) for intermediate degrees of first-order coherence as well.

12



‘Circular Aperture
For a circhlar.aperture a general,éampling approximation similar to Eq.
" (1.21) has not been discovered. If the radiance distribution of the object

possesses circular symmetry, B(u) = B(|g|), however, the eigenvalues are given
approximately by

hkn = (AZRﬁ/ABT) B(ka}R/Zﬂa), (1.24)
where a is the radius of the aperture and the numbers x,, are the zeros of the
Bessel function of order n,

Jn(xkn) =0, k=0,1, 2,3, ... . (1.25)

For n = 0 the eigenvalues have multiplicity 1, for m > 0 multiplicity 2. The
derivation is presented in Appendix A.

When the object is a circle of area [—\.o = naéz radiating uniformly, the
integral equation (1.20) reduces to the one treated by Slepian.16 The mode
functions nkn'(g) are proportional to the generalized prolate spheroidal wave

functions, and the associated eigenvalues are
hlql = (4/0‘2) An’k(o‘)y
o = kaaO/R = 2naao/AR, (1.26)

where Ay i are the eigenvalues tabulated by Slepian; our o corresponds to his
2 .

parameter ¢c. For o >> 1 the number of significant eigenvalues is approximately
M= a2/4 = AAO/AZRZ, (1.27)

those of multiplicity 2 being counted twice. The significance of the generalized
prolate spheroidal wave functions for representing the field in the image plane

has been pointed out by Toraldo di Francia.”

13
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As Slepian has sho_wn,16

the eigenvalues Kn,k(QI-?ff,?mall for o << 1.and
approach 1 exponentially when o >> 1. According to:Eq. -(1.24), an eigenvalue
An;k(d) will be significantly large when the parametef &_exbeeds the correspond-
ing zero X of the Bessel function Jn(x). For o = 10, for instance, there are
2 x 9+ 3 =21 zeros X less than o, counting zeros with n > 0 twice. Of the

corresponding eigenvalues An k(10) the smallest is 16 0(10) = 0.740. For a =
> ]

10, M = a2/4 = 25.

14
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II. Quantum Detection

The Mode Operators

The decomposition 6f the aperture field into spatio-temporal modes can be
used, as indicated by Kuriksha,l7 to derive the optimum detector of the light
from an incoherently radiating object in the presence of thermal background
light. The principal assumptions required are that the light from the object
fall nearly perpendicularly upon the aperture from a cone of directions much
narrower than 1 steradian and that the diameter of the aperture be much greater
than the correlation length of the thermal light and the wavelength of the
object light.

Quantum-mechanically the field at the aperture is treated as an operator.
It is divided into its positive-frequency part y (r, t) and its negative-fre-
quency part ¢_(r, t), which are hermitian conjugate operators,

o (r, ©) = [ (r, B (2.1)

Cléssically ¢+(§, t) corresponds to the analytic signal. The mutual coherence

function of the aperture field is

o(r), t ;51,5 t) =Trloy (T, ) v, (r, t)l, (2.2)

8

1
where Tr stands for the trace and p is the density operator of the field.
When the object is present, ¢ is the sum of P and ¢, as given by Egs. (1.2)
and (1.3); when the object is absent, ¢ = @,

The field operator y_(r, t) is expanded in the spatio-temporal modes
defined by Eqs. (1.10) and (1.11). The coefficients of this expansion are pro-

portional to the quantum-mechanical operators

T
1 .
b = (20c/1)7 f J et npF @) v () g, (r, ) dPrdt. (2.3)
g Ao =

15
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In the expansion of ¢y (r, t) the hermitian conjugate operators

T
bqn+ = (Zszc:/‘h)l,/2 J' je'mt nq(g) v (8 v (r, t) d°rdt (2.4)
2 hJo :

appear. Under the assumptions stated at the beginning, these operators commute

for different spatio-temporal modes; specifically, their commutators are

+ + +
Pons ban 1= Pongn ™ Pgn Ppm = Spqmn
_ L H
boms bl = [y ’s bogl = 0. (2.5)

These operators play the same role as the ordinary creation and annihilation
operators for the spatial modes of the electromagnetic field when quantized in
a closed volume.é’18
To derive the first of these commutation relations, the commutator of the
operators w+(§l t ) and ¢_ (r R tz) is used; it is proportional to the positive-

frequency part of Green's function for the free scalar field,18

v, (s ) v (x,, t)] =

—’1’1(211) ff[‘lexp[lw(t - t,) + ik (x) —r)]d3k

w? = c?k? = c2(k ? + ky2 + k%), (2.6)

Using Egqs. (2.3), (2.4),and (2.6), we find

T T
by ban ] = (@/87%C) J f f f f f Jlkzl'1 RICRIRICH
~ ~ A0 AT O ~

an(rz) v, (t,) expli(@ - w)(t, - t) + ik (x, - 1)]

xd?rldzgzdtldtzdkxdkydw. (2.7)

In the process we have changed integration variables from (kx’ ky’ kz) to (kx,

ky’ w), with wdw = czlkzldkz. In Eq. (2.7),

16
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~

k- (z, - 1,) = kG, - %) * kG, - y,),
z, and z, having been set equal to 0 for points on the aperture.

The right-hand side of Eq. (2.7) contains the Fourier transforms of ymf(tl)
and yn(tz). We have seen in Section I that thellargest frequencies in these
functions are of the order of W. Hence in the integration over w in Eq. (2.7)

a significant contribution will be made only by values of w within about W of
2, and W << @. The multiple integral also contains the spatial Fourier trans-
forms of np*(gl) and nq(gz). The highest spatial frequencies in these functions
"are much 1éss than k =~2w/A when, as assumed, the object subtends a solid angle
much less than 1 steradian. Hence, to the integration over kX and ky in Eq.
(2.7) only values of kX and ky much less than k = w/c contribute. It is there-

fore an accurate approximation to set
= (w2c™2 - %k 2 - % 2
]kzl (w4c kX ky )

equal to ©/c and take it outside the integral. The integrations over w, kx’
and ky now lead to delta-functions, and when these are integrated out and the
orthonormality of the mode functions is used, the first part of Eq. (2.5) re-

sults. The second part follows immediately from the commutator
o, (r;, t), v, (r,, t,)] =0
and its hermitian conjugate.

The mode operators bpm’ bqnf are not ordinary quantum-mechanical operators
because they possess no time deﬁendence. They are determined, as in Eqs. (2.3)
and (2.4), by integrals of the aperture field over two spatial dimensions and
over time. Despite this unusual character, the operators for different modes
are in principle measurable simultaneously. In back of the aperture a large,

lossless cavity is placed, as described in III. Initially empty, it is exposed

to the aperture field during the interval (0, T), after which it is closed:

17
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The operatorsnbpm and bqn+ can be expressed as linear combinations of the
creation and annihilation operators of the cavity modes at any later time t > T
by applying the technique developed in III. Since bpm and bqnf commute, so do
those linear combinations and are hence measurable By suitable observations of

the cavity field.

18
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The Optimum Detector

Both the object and the background contain a great many atoms, ions, and
electrons radiating independently. The density matrices o and o, describing
the field under the two hypotheses H (object absent) and H, (object present)
have, therefore, gaussian P—representations.19 These depend only on the mode
correlation matrices Tr(pibq;bpm), i =0, 1, which are related through Egs.
(2.3) and (2.4) to the mutual coherence functions of the aperture field under
Hofand Hl.

Because the diameter of the aperture is much greater than the correlation
length of the background field, and because the rays from the object are paraxial,
the mutual coherence function 9 of the background light can be expressed in the
delta-function form of Eq. (1.2), as discussed in III, Section IV. Furthermore,
the mode functions are eigenfunctions of the mutual coherence function of the
object light, Eq. (1.9). As a consequence of Egs. (1.2) and (1.9) and of the
orthonormality of the mode functions--Eq. (1.8)--, the mode correlation matrices
Tr(pibq;bpnp under both hypotheses are diagonal. The modes are statistically

indepeﬁdeﬁt and can be treated separately. Furthermore, the density matrices

and o, TOW depend only on the number operators n__ = b "b_ of the modes,

e pm  pm pm

0
and because of Eq. (2.5) these commute and are simultaneously measurable.

The operator npm determines the excitation level or number of photons in

the spatio-temporal mode (pm). The outcome ném of a measurement of n o is an

integral-valued random variable with an exponéntial distributionl,g’20~
1y = (1 - (D) , (1)

P = (- vi)) epl n vy,

(1) - @), 1) -
Vpl::l —Npl':lLl /(Np;l + 1), 1= 0: 1’ (2‘8)

where

19
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,nggl) = = [exp@e/KT) - 117 (2.9)
and )
1) _ +
Non' - N g (2.10)

Here K is Boltzmann's constant, T is the effective absolute temperature of the
background light, and NS = Es/ﬁn is the average total number of photons received
at the aperture A from the object during (0, T). It has been assumed in Eq.
(2.9) that all significant modes have the same frequency Q; the differences are
at most of the order of W << Q.

The independence of the modes permits basing the optimum detector on the
logarithmic likelihood ratio®

U= 4n Z;‘; P, (nI'im)/pO (n}')m) =

Z {nfam EH(VIEI}I)/VIEI?I)) + £n[(1 - Vlgl:rll))/(l - VIEI?I))]} (2.11)

e 3 -
The detector chooses Hl, deciding that the objéct is present, if U exceeds a
decision level Uo’ which can be set to provide a pre-assigned false-alarm
probability

Q, = Pr(U > UOIHO).

In the quantum limit NI%) <<1, << 1, and Vr();l) = NIg;l) , whereupon the

~ ~

logarithmic likelihood ratio is approximately

U= ;n [ném m(l + h}zgmNs/m) - hlggmNs]. (2.12)

~

1f, as we are generally assuming, the spectral density of the object light is
uniform over a frequency interval of width W about /2w, and WI >> 1, the
eigenvalues g can be set equal to (WI)-1, and the statistic U can be written

as a sum over only spatial modes,

U= ; [n, en(1 + h N/SWT) - hNT, (2.13)

20
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where
nE) = Zn}}m | (2.14)
is the total number of photons counted in spatial mode P during (0, T). The
optimum detector weights these numbers logarithmically in accordance with the
expected number N?S = hpNS of photons received in that mode from the object when
present. 7
When the object is a point source, only a single spatial mode is signifi-
'cant, and the decision can be based on the total number nlof photons counted at
the aperture. Since WI >> 1, that number has a Poisson distribution under both
hypotheses H, and H . The probability Q; = Pr{U > UO!Hl} of detecting the
object can be calculated as described in III, Section V, where Q is plotted as
a function of the average number NS of signal photons for various values of
N, = T,
When the object is extensive, Ab/éxéy >> 1, yet AO << R?, focusing the
object plane onto an image plane associates each significant spatial mode
np(;) in the aperture with a diffraction pattern in the image plane. The
p;ttern is centered at the geometrical image of the associated object point
Cpk 8 s py 6?). Suppose the image plane to contain a mosaic of photosensitive
spots just coinciding with the central peaks of each of these diffraction
patterns. If their quantum efficiency equaled 1, the number of photoelectrons
each spot emitted would be nearly equal to the number np for the associated
spatial mode, and a detector that weighted those number; of photoelectrons as
in Eq. (2.13) would be nearly equivalent tp the optimum detector. Such a

detector has been analyzed previously.21
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The Threéhold Detector

The optimum detector specified by'Eq. (2.13) and depending through NS on
the total radiant power BT of the objéct does not provide a uniformly most
powerful test.zz It must be set up for a standard object of radiance propor-.
tional to B(u) and total power B%Oz and it will provide subopfimum detection of
objects of different total power BT'

A detector that is independent of knowledge of BT’ yet nearly as good aé
the optimum, is obtained by replacing the logarithm in Eq. (2.12) by the first
term of it; Taylor expansion. The constant factor Ns/ﬂl can be cancelled from
both statistic and decision level, and the new detector is equivalent to one
basing its decision on the operator

- Z ,

u' = £ hggmngm = ot hggmbEm bEm. (2.15)
This is the threshold detector derived in III. - Ey'using the definitions in
Egqs. (2.3) and (2.4) and the orthonormality of the mode functions, U' can be
written as a bilinear integral form in the field operators y_(r, t) and v_(r, t),
with a result differing only by aﬁ inconséquential constant factor from III,
Eq. (4.18).» Whenﬁgm = (WI)~!, the threshold detector bases its decisions onthe
weighted sum

Ut = hn 2.16
2 (2.16)

of the numbers n.p of photons counted in the spatial modes P during the interval
©, 7. ) |

f fv'When.M = 1, the threshold and optimum detectors are identical, basing
theif décisions.oh the total number n;of photons observed at the aperture.
When M >> 1, as we have seen, there are about M spatial modes with nearly

equal eigenvalues h.p =M, and bOth?thg_ﬁhreshbid and the~opfimum detectors -sum

~
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the numbers np of photons in these mpdes with approximately a uniform weighting.
The two detectors differ only in their treatment of modes whose evigenvalﬁes are
rather less than M™!, and these contribute relatively little to the statistics
U or U'. Hence,when their decision levels are adjusted to provide equal false-
alamm probabilities Q,, the threshold and the optimum detectors attain nearly.

the same probability of detection.
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Detectability of a Circular Object
When the object radiates uniformly over a circle of radius a, and the
aperture is a ci?cie of radius a, the eigehvalges h,p‘=.hkn determining the
detection statistic and the probability of detection aré given by Eq. (1.26) in
terms of the eigenvalues tabulated by Slepian.l6 To illustrate the dependencé

of the probability of detection on the degree of cohérénce of the object light

reaching the aperture, we have calculated it forvthe threshold detector,
Qq = Pr{U" > U |H},

as a function of the average total number N, of photons from the object. The

decision level U, was set to attain a false-alarm probability
Q, = Pr{U" > UO]HO}

equal to 0.01, and the value of N, = JtWI was set equal to 1.0. The results are
plotted in Fig. 1 for various values of o = 2ﬂaaO/R)..

For o = 0 a single spatial mode contributes to the detection, and the
optimum and threshold detectors are the same. The number of photons observed
has a Poisson distribution, and the detection probability is calculated by III,
Egs. (5.17) - (5.19). For o =1 four ténns and for a = 2 five terms in the sum
in Eq. (2.16) were used, corresponding to the four or five largest eigenvalues
hkn’
all sets of numbers np for which the sum U" is less than Ups Qg is equal to 1

and a computer was programmed to add up the joint Poisson probabilities of

minus this total probability. Taking seven terms for a = 2 changed the detection
probabilities only slightly, but greatly increased computation time.
For o > 4 the moment-generating function (m. g. f£.) of the statistic U",

u(s; Ny) = E [exp(sU) [H ] =

exp| kz (NO + Nshkn) exp(hkns)] > (2.17)
,n
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was used to calculate the detection probability. The false-alarm probability

QO is the inverse Laplace transform of [1 - u(-s; 0)]/s evaluated at U' = Uo’

and this was approximated by the method of steepest descent, as in III, Eq.
(5.23). By means of Newton's method the decision level U0 yielding Q0 = 0.01

was determined. The detection probabilities were ‘then computed by summing the
Gram-Charlier series,23 whose coefficients are calculated by expanding £n u(s; NS)
in a power series at s = 0. Terms in the series were summed as long as they
decreased, and the summation was stopped when the terms began to increase again,
consistently with the asymptotic nature of the Gram-Charlier series.

In order to compare the threshold detector with the optimum, the detection
probabilities attained by the latter were also calculated for o = 4, 6, and 8.
The optimum detector was set up for a standard number Néo) of signal photons
equal to 8; N0 = MWT = 1. The moment-generating function for the optimum
statistic U is the same as in Eq. (2.17), except that exp(hkms) is replaced by
exp[s £n (1 + N§O)hkm/N0)]’ and the same method of computation was used. The
differences between the detection probabilities for the optimum and threshold
detectors were of the order of the inaccuracy in the numerical calculations and
too small to show up on the graph in Fig. I.

The results demonstrate the slight difference between the performances of
the optimum and the threshold detectors, and they show how, for a fixed false-
alarm probability Q> the detection probability decreases as the object lighf‘is

divided among more and more spatially incoherent degrees of freedom.
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Detectability ofiLarge Objects
The logarithm of the moment-generating function of the threshold operator
U'.in Eq. (2.15) is
tmou(s) = B |H) =
- pz,r;zn{l - Ngl) [exp[h?gms) - 1p (2.18)
with the mean value Né;) given by Eq. (2.10). Since Néé? << 1 under quantum-

~

limited conditions, this is approximately

_1 .
£n u(s) = :id +h g N ) [expth g s) - 1]. 2.19
#6) = 2y (R N [epiygs) - 1] (2.19)
When the object contains many degrees of freedom, MWT >> 1, the sum over the

spatio-temporal modes can be replaced by an integration over temporal frequency

and over the object by substituting from Eqs. (1.15) and (1.21). The result is

£n u(s) = ‘ft,MT/ /(dzlg/Ao)/ (dof/Zﬂ)
0 L

x [1 + N, B(w) X(w)/BRMI]

x {exp[B(u) X(w)s/BMT] - 13}, (2.20)
where B = BT/A.o is the average radiance of the object and M .= AAO/A2R2 is its
effective number of degrees of freedom. This corresponds to III, Eq. (5.14) for
a point object of arbitrary spectral density X(w). An expansion of £n u(s) in
powers of s yields the cumulants of the distribution of the statistic U', from
which the coefficients of the Gram-Charlier series can be calculated.23 An

example of a point object with a Lorentz spectrum was described in III, Section

V.
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IIi. Estimation of Object Radiance

We have seen in Section I that the eigenvalues hp of the spatial modes
are proportional to samples of the radiance distribution B(u) of the object
when the aperture is rectangular and the object so large that M = AAb/AZR2 >> L.
The mode functions are in this approximation independent of the actual form of
B(g). The aperture field can therefore be expanded in spatial modes without
knowledge of the true distribution of radiance in the object plane, and the
strength of each mode in the component of the aperture field due to the object
is proportional to the radiance B(u) at a particular point of the object.

The random coefficients of this expansion in spatial modes will be
statistically independent. It is possible, therefore, to estimate the radiance
B(u) at points on the object spaced by 6, = AR/a in the x-direction and by
5y = AR/b in the y-direction;,and these estimates can be made independently.
Conversely, it is to be expected that B(u) cannot be estimated at a finer 'grid
of‘sample points by any méthod that does not require simulfaneouS'Calculati6£s
involving all the points.

A lower bound to the relative mean-square error of an'unbiased estimate

of the radiance Bp('= B(gp)’at the sample point gp‘= (pX Sx’ py6y) can be calcu-

lated by means of the Cramér-Rao inequality.24720

As might be expected, this
lower bound is the same as that determined in IV for the relative mean-square
error of the radiant power of a point source.

Since the number operators npm = bpm+bpm for the spatio-temporal modes
commute and can be measured simulténeousiy, the classical-statistical form of
the Cramér-Rao inequality can be used, and since the modes are statistically
independent, they can be treated separately. The data for estimating Bp are the

observed numbers nﬁm of photons in the modes (pm), whose joint probability is,

~
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as in Eq. (2.8),

P({ném}; ?) =ﬁ1;{ 1 - VEm) exp(ném In VEm),

V}nn = P&nn/(l + bﬁyn)’ (3.1)
where

Npm =1 + g0 (3.2)

with 6 = hpNS~proportiona1 to Bp through an equation like Eq.(1.21).

The ﬁean—square error of an unbiased estimate 8 of 6 is bounded below by

E(6 - 0)2 > {E[sg‘m P} 0121

- {;,[gmzmgmcl " N1 (3.3)

By use of Eq. (1.15) and the inequalities
WL >> 1, N _ <<1,
pm
the sum over m can be approximated by an integral over frequency involving the
spectral density X(w) of the object light. As a result the relative mean-square

error in an unbiased estimate of 6 or B_ is bounded below by
E(B_ - B)2/B2 3 N_"l[f (2)]1,
(B, - B2/B)7 > N THE, ()]

,,@p = Nps/!IEWT, (3.4)

where Nps = hpNS is the total average number of photons received from the
object in spe&tral mode p, that is, from an area Ag = 6X6y of the object about

u_. The function fl(ZD) is the same as in IV, Eq. (3.4),

jos)
£,(2) = ;aw[ [X(w)]2[1 + DWX(w)] ™} du/2r, (3.5)
~
and Eq. (3.4) corresponds to IV, Eq. (4.6) for the relative mean-square error
in the radiant power of a point object.

When the spectral density of the object is rectangular, the total number
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of photons from all temporal modes in spatial mode p is a sufficient estimator

of the parameter 6 or, equivalently, of the radiance Bp at the sample point gp
24,26

on the object. It provides an unbiased estimate after the known average
contribution NO =L WT of the background is subtracted, and the relative mean-
square error of the estimate is given by the right-hand side of Eq. (3.4), where

now
£,(0) =2/ + 1).

Under extreme quantum-limited conditions the minimum relative mean-square
error in an estimate ﬁp is equal to Nps-l’ where N s is the average number of
photons received durin;g (0, T) from tfle element of~area axéy about the point
(p, 8., P, 8_). Under a background limitation (K7 >> fi0), the minimum mean-
sduare error is, as in I, Eq. (6.3),

B, - Bp)%/By” = (V'/E,)? W,
where Eps = Np Je is the total average energy received from the area chsy

about gI;, and N' = KT is the spectral density of the background light,assumed

spatialiy and temporally white.
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Appendix

Approximate Eigenvalues of a Circularly Symmetrical Kernel
Dropping the primes on the eigenfunctions in Eq. (1.20) and writing y(r)

for B(f)/AB(O), we study the integral equation

A
in which y(r) is assumed to be a function of r = |r| only. Its Fourier transform
¥(p) = v¥(o) =/w(g) exp(-ip-r) d2r (A2)

is a function only of o = |p|. (Unmarked integrals are taken over all of two-

dimensional space.) Thérefore,27

v(r - s) = /W(Q) explip-(xr - s)] d2%p/(2nm)2

=/p‘i‘(p) Jolelr - s]) do/2m =

0
= a0
; @ - émo)/p‘i’(p) J,(er) I (ps) cos m(e . - 6] do, (A3)
0
where s = |s| and o and 6_ are the polar angles of the points r and s, respect- .

ively.
We assume to start with that the eigenfunction nkm(§) is given for m > 0

by .
nkm(§) = Ckm I (bkms) cos mo_, (A4)

where C,  is a normalizing constant and X = Pyp® 18 the k-th zero of the
Bessel function Jm(x); a is the radius of the aperture. It will appear later

that this assumption is approximateiy correct when the radius a of the aperture
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is much greater than the width of y(r). A second set of eigenfunctions is, for

m '>:.:.:,'0, nkm(§) = Ckm Jm(bkms) sin mes; (A5)

the derivation to follow goes through for them as well, and the resulting eigen-
values hkm are the same. For m = 0 the eigenfunctions are, still approximately,

Mo () = Cp Iy o8- (A6)

Thus the eigenvalues hkm have multiplicity 1 for m = 0 and multiplicity 2 for
m > 0. All these eigenfunctions are orthogonal over the circle 0 < s < a,
0<o s < 2w.

Substituting from Eqs. (A3) and (A4) into Eq. (Al) and integrating over
B> We find

hkm nkm(g) = Ckm CcoS mer

fes) a
x depj sds ¥(p) J (1) J_(0S) S
0 0

= Gy COS mo_, jp‘i’(p) B (e) J, (1) do, (A7)
0

where27

a
ka(p) =f s Jm(ps) Jm(bkms) ds
0

= (p2 - bkmz)‘l b Iy (by ) J_(ea). (A8)
The function ka(p) is sharply peaked near p = bkm; its width is of the order of
a~}. When the width of ¥(r) is much less than a, its Fourier transform ¥(p) is
nearly constant for changes in p of the order of a~!. Therefore, we can put
¥(p) = \P(bkm) in the integrand of Eq. (A7) and take it outside the integral.
The integration over p in the first part of the right-hand side of Eq. (A7) can

now be carried out; it represents the closure relation for the Fourier-Bessel
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_ transform and yields a delta function s~ 1s(r - s). Upon integrating over s, we
get approximately | o

hlqn nkm_(f) = Ckm W(bkm) Jm(bkmr) cos mo_, (AQ)
verifying our choice in Eq. (A4) of the approximate eigenfunctions. Hence

hkm = ‘P(bkm) , and translating this result into the notation of Section I, we

obtain Eq. (1.24).
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Figure Caption

Fig. 1. Probability Qd of detecting a uniform circular object of radius a,
by observations at an aberture of radius a, versus the average number Ns of
photons received from the object. The average number of background photons is
N, = 9tWT = 1.0; the false alarm probability is Q, = 0.01. The curves are

0
indexed by the parameter a = Znaao/AR.
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